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1. Show, using the formulae for 


n

r

r
1

  and   


n

r

r
1

2 , that 

 





n

r

r
1

2)12(3  = n(2n + 1)(2n – 1), for all positive integers n. 

(5) 

 

 

2.       z = 
i43

50


. 

 

Find, in the form a + ib where a, b  ℝ, 

 

(a)  z, 

(2) 

(b)  z
2
. 

(2) 

Find 

 

(c)  z, 

(2) 

(d)  arg z
2
, giving your answer in degrees to 1 decimal place. 

(2) 

 

 

3.       f(x) = 2

1

2x  + 2

1


x  − 5,         x > 0. 

 

(a)  Find f ′(x). 

(2) 

 

The equation f(x) = 0 has a root  in the interval [4.5, 5.5]. 

 

(b)  Using x0 = 5 as a first approximation to , apply the Newton-Raphson procedure once to f(x) 

to find a second approximation to , giving your answer to 3 significant figures. 

(4) 
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4. The transformation U, represented by the 2  2 matrix P, is a rotation through 90° anticlockwise 

about the origin. 

 

(a)  Write down the matrix P. 

(1) 

 

The transformation V, represented by the 2 × 2 matrix Q, is a reflection in the line y = −x. 

 

(b)  Write down the matrix Q. 

(1) 

 

Given that U followed by V is transformation T, which is represented by the matrix R, 

 

(c)  express R in terms of P and Q, 

(1) 

(d)  find the matrix R, 

(2) 

(e)  give a full geometrical description of T as a single transformation. 

(2) 

 

 

5.      f(x) = (4x
2
 + 9)(x

2
 − 6x + 34). 

 

(a)  Find the four roots of f (x) = 0. 

 

 Give your answers in the form x = p + iq , where p and q are real. 

(5) 

(b)  Show these four roots on a single Argand diagram. 

(2) 
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6.      X =  








23

1 a
, where a is a constant. 

 

(a)  Find the value of a for which the matrix X is singular. 

(2) 

 

  Y = 






 

23

11
. 

(b)  Find Y
−1

. 

(2) 

 

The transformation represented by Y maps the point A onto the point B. 

 

Given that B has coordinates (1 –  , 7 – 2), where  is a constant, 

 

(c)  find, in terms of , the coordinates of point A. 

(4) 

 

7. The rectangular hyperbola, H, has cartesian equation xy = 25. 

The point P 








p
p

5
,5  and the point Q 









q
q

5
,5 , where p, q  0,  p  q, are points on the 

rectangular hyperbola H. 

 

(a)  Show that the equation of the tangent at point P is 

 

p
2
y + x = 10p. 

(4) 

(b)  Write down the equation of the tangent at point Q. 

(1) 

 

The tangents at P and Q meet at the point N. 

 

Given p + q  0, 

 

(c)  show that point N has coordinates 








 qpqp

pq 10
,

10
. 

(4) 

 

The line joining N to the origin is perpendicular to the line PQ. 

 

(d)  Find the value of p
2
q

2
. 

 (5) 
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8. (a)  Prove by induction that, for n  ℤ+
, 





n

r

rr
1

)3(  = 
3

1
n(n + 1)(n + 5). 

 (6) 

(b)  A sequence of positive integers is defined by 

     u1 = 1, 

     un + 1 = un + n(3n + 1),    n  ℤ+
. 

  

 Prove by induction that 

     un = n
2
(n – 1) + 1,    n  ℤ+

. 

 

 (5) 

 

9. 

 
 

Figure 1 

 

Figure 1 shows a sketch of part of the parabola with equation y
2
 = 36x. 

The point P (4, 12) lies on the parabola. 

 

(a)  Find an equation for the normal to the parabola at P. 

(5) 

 

This normal meets the x-axis at the point N and S is the focus of the parabola, as shown in 

Figure 1. 

 

(b)  Find the area of triangle PSN. 

 (4) 

 

TOTAL FOR PAPER: 75 MARKS 

    END 
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Question 

Number 
Scheme Marks    

1.  2 2

1 1 1 1

3(4 4 1) 12 12 3
n n n n

r r r r

r r r r
   

         

 

M1 

 

     = 
12 12

( 1)(2 1) ( 1), 3
6 2

n n n n n n      
A1, B1 

 

        2( 1)(2 1) 6( 1) 3n n n n       
M1 

 

 
      

24 1 (2 1)(2 1)n n n n n                                      

       

A1   cso 

 

 [5] 

2. (a) 
50 50(3 4 ) 50(3 4 )

6 8
3 4 (3 4 )(3 4 ) 25

i i
i

i i i

 
   

  
         

 

M1 A1cao 

(2) 

 (b) 2z   
2

6 8i = 36 64 96i   = 28 96i   M1 A1       (2) 

 (c)  
226 8z    =10 

 

M1 A1ft 

(2) 

 (d)  
96

tan  
28

α





  
 

M1  

 so o106.3    or  o253.7  

 

A1 cao  (2) 

[8] 

3. (a)   
31

2 21
2

f ( )x x x
 

    M1 A1(2) 

 
(b)   f(5) = - 0.0807 

        f (5) 0.4025   

B1 

M1 

       0
1 0

0

f ( ) 0.0807
5

f ( ) 0.4025

x
x x

x


   


  

M1  

 

             =5.2(0)    

A1 

(4) 

[6] 
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Question 

Number 
Scheme Marks    

4. 
(a) 

0 1

1 0

 
 
 

  B1             (1) 

 
(b) 

0 1

1 0

 
 
 

 B1             (1) 

  

(c) R = QP  

 

 

B1             (1) 

(d) 
0 1 0 1 1 0

R
1 0 1 0 0 1

      
     

    
  

 

M1 A1 cao 

(2) 

 

(e) Reflection in the y axis 

 

 

 

B1 B1        (2) 

[7] 

5. 
(a)   24 9 0 ix x k    ,       

3
i

2
x    or equivalent 

 

M1, A1 

 

         Solving 3-term quadratic by formula or completion of the square 

6 36 136

2
x

 
  or 0349)3( 2 x   

M1 

 

  

 3 5i and 3-5i   

 

A1  A1ft    (5) 

 (b)  

 

 

 

 

 

 

                                                           Two roots on imaginary axis B1ft 

                                             Two roots – one the conjugate of the other  
 

B1ft 

   

   

                                                                         Accept points or vectors  

   

   

   

   

   

   

   

   

  (2) 

  [7] 

   

 

 

5 

5  

3
i

2
  

3
i

2
 

3 5i  

3 5i  

O 
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Question 
Number 

Scheme Marks    

6.  

(a)       Determinant: 2 – 3a  = 0 and solve for a =  

           

 

M1   

 

            So 2
3

a   or equivalent 

 

         

A1 

(2) 

 (b)    Determinant: (1 2) (3 1) 5 ( )          

 
 

1
2 1 0.4 0.21

Y
3 1 0.6 0.25


    

     
     

 
M1A1 

              (2)  

  

(c) 
2 1 1 2 2 7 21 1

3 1 7 2 3 3 7 2 2 15 5

   

   

         
       

            
 

 

 

M1depM1A1

A1 

(4) 

[8] 
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Question 
Number 

Scheme Marks    

7. 
(a) 

225 d
so 25

d

y
y x

x x

    
 

M1 

 
                              

2 2

d 25 1

d (5 )

y

x p p
      

 

A1 

 
      2

2

5 1
( 5 ) 10y x p p y x p

p p
                 (*)                                       

 

M1 A1    

(4) 

  

(b)       2 10q y x q   only 

 

B1  

 (1) 

  

(c)  2 2( ) 10( )p q y p q    so  
2 2

10( )

( )

p q
y

p q






10

p q



 

 

 

M1 A1cso 

 

 2 10
10x p p

p q
 


 = 

10 pq

p q
 

 

M1 A1 cso 

(4) 

  

(d) Line PQ has gradient 













pqqp

qp 1

55

55

 

 

 

 

M1 A1 

 

ON  has gradient 













pq

qp

pq

qp 1

10

10

 or  pq

pq






1

1
could be as unsimplified  

 

equivalents seen anywhere 

 

 

B1 

 

 
As these lines are perpendicular 

1 1
1

pq pq
    so 2 2 1p q   

 

OR for ON 

1 1( )y y m x x    with gradient (equivalent to) pq and sub in points O 

AND N to give 
2 2 1p q   

OR for PQ 

1 1( )y y m x x    with gradient (equivalent to) –pq and sub in points P 

AND Q to give 
2 2 1p q   

 

 

 

 

 

 

 

 

M1 A1 

 

  

 
(5) 

[14] 
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Question 
Number 

Scheme Marks    

8. 
(a) If n =1, 

1

( 3) 1 4 4
n

r

r r


     and 

1 1
( 1)( 5) 1 2 6 4

3 3
n n n       , 

 

 

B1 

 

 

 (so true for n = 1. Assume true for n = k)  

 
 So

1

1

1
( 3) ( 1)( 5) ( 1)( 4)

3

k

r

r r k k k k k




        
M1 

 

 
                       =   

1
( 1) ( 5) 3( 4)

3
k k k k     = 

21
( 1) 8 12

3
k k k      

A1 

 
                       = 

1
( 1)( 2)( 6)

3
k k k    which implies is true for 

1n k   

dA1  

 As result is true for 1n  this implies true for all positive integers and 

so result is true by induction       

dM1A1cso 

 

  (6) 

 (b)  2

1 1 (1 1) 1 1u        

B1 

 (so true for 1n  . Assume true for n = k)  

 2

1 ( 1) 1 (3 1)ku k k k k        

M1,  

 2 2( 3 1) 1 ( 1) 1k k k k k k         which implies is true for n = k + 1 A1 

 

 

 As result is true for n = 1 this implies true for all positive integers and 

so result is true by induction       
 

M1A1cso 

(5) 

  [11] 
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Question 

Number 
Scheme Marks    

9. 
(a) 

1
26y x   so 

1
23

dy
x

dx


  

 

M1 

 

 Gradient when x = 4 is 3
2
 and gradient of normal is 2

3
  M1 A1 

 

 So equation of normal is 2
3

( 12) ( 4)y x      (or 3 2 44y x  ) 

       

M1 A1 

 

 

 (5) 

 (b) S is at point (9,0)  B1 

 N is at (22,0), found by substituting y = 0 into their part (a) B1ft 

 Both B marks can be implied or on diagram.  

 So area is 1
2

12 (22 9) 78     

 

M1 A1 cao 

(4) 

[9] 

 


